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vy i
" JIn this paper the basic semiconductor device eguations modelling a g SO0 ;E{'ﬁ
\ tep, 7 RV
symmetric one-dimensional voltage-controlled diode are formulated as a _‘L‘:Q

singularly perturbed two point boundary value problem. The perturbation
parameter is the normed Debye~length of the device. ihfﬁﬁti;; the zeroth and
first order terms of the matched asymptotic expansion of the solutions, which
are the gsums of uniformly smooth outer terms (reduced solutions) and the
exponentially varying inner terms (layer solutions). The main result of the
paper is that, if the perturbation parameter is sufficiently small then there
exists a solution of the semiconductor device problem which is approximated
uniformly by the zeroth order term of the expansion, even for large applied
voltages. This result shows the validity of the asymptotic expansions of the
solutions of the semiconductor dev'ce problem in physically relevant high-

injection conditions.
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SIGNIFICANCE AND EXPLANATION

It is well-known that potential distribution and current flow in a
pn-junction diode are described by the solution of a system of ordinary
differential equations subject to certain boundary conditions. We scale the
system appropriately and obtain a singular perturbation problem, i.e. certain
derivatives of the dependent variables are multiplied by a small parameter
which is identified as the normed Debye~length of the device.

The singular perturbation character of the problem introduces two
different scales of variation of solutions, namely a fast one on which the
solutions vary close to the pn~junction and a slow one away from the junction.

~We derive separate representations of the solutions which hold ingide and
outside the pn-layer respectively, and we obtain asymptotic expansions of
solutions by matching these local representations.

The main result of this paper is that the asymptotic expansion
'represents' a solution of the semiconductor problem for small A, i.e. there
is a solution which is approximated well by the derived (finite) asymptotic
expansions, provided ;he sinqular perturbation parameter is small. We present
an estimate for the approximation error depending on the applied voltage and
show that the singular perturbation approach 'covers' physically relevant bias

ranges for modern, highly doped devices.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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ASYMPTOTIC REPRESENTATION OF SOLUTIONS OF
THE BASIC SEMICONDUCTOR DEVICE EQUATIONS

Peter A. Markowich*® and Christian Schmeiser®
1. INTRODUCTION
This paper is concerned with the asymptotic representation of golutions of the basic
semiconductor device equations for the case of a simple model device, namely the symmetric
one-dimensional diode.
The physical situation we encounter is as follows. A semiconductor (e.g. silicon) is
doped with acceptor ions in the left side (p-side) and with donor ions in the right side

(n~side) and & bias V = V, - V. is applied to the Ohmic contacts (see Figure 1).

anode cathode
contact contact

applied potential vA applied potential Ve

Figure 1: Diode

For simplicity we make the following synmetry assumptions:

(1) The pn-junction (that is the boundary between the n and the p-region) is in the
middle of the device.

{ii) The concentration of acceptor atoms in the p-side and the concentration of donor

atoms in the n-side are constant and equal (to C > 0, C is called doping concentration).

(i11) The applied potentials V.,V, satisfy: Vo = ~V,.

Under these assumptions, the performance of the device is described by the following two-

point boundary value problem

*Technische Universiti¥t Wien, Institut fiir Angewandte Mathematik, Wiedner Hauptstr. 6-10,
A-1040 wien, Austria, Europe

Sponsored by the United States Army under Contract No. DAAG29-80-C-~0041.
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(1.1a) sz"-n-p- 1
(1.1b) nt o= oovt 3
L0 < x< 1

(1.1¢) p' = -p¥*' - %
(1.1d) I =0 J
subject to

u 1+ /1 + 484,
(1.1e) Vo) =0, (1) =¥, (8) -2, ¥, (8) ln(—zaz—_’
(1.1£) n(0) = p(0), n(1) -%(1 + /1 + a8%)

(1.1g) p =3 (-1 + /14 as)

where the dependent variables have the following physical meaning
¥: (scaled) electrostatic potential
n: (scaled) electron concentration
p: (scaled) hole concentration
J: (scaled) total current density.

The x-interval [0,1] on which the problem is posed represents the n-side of the device

(after scaling), U = :— (where Ugp * % Volt is the thermal voltage) represents the
T

voltage parameter, ¥ is that potential at x = 1

BI which prevails if zero external bias

is applied (built-in-potential, originating from the doping) and 1,8 > 0.

The problem (1.1) is derived by adapting the basic semiconductor device equations (as
given by Van Roosbroeck (1950)) to our specific device using the symmetry assumptions (i),
(i1), (114) and other simplifying assumptions (like constant electron and hole mobilities
and neglect of generation-recombination of carriers) and by appropriate scaling (the length
of the device is scaled to 2, the doping concentration to 1). Details on the assumptions
and on the scaling are given in Markowich and Ringhofer (1984) and Markowich (1983),
(1984).
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The parameters A and § are introduced by the scaling. Physically A is the

LR B

normed Debye length of the device, that means

s
B

¢

€U,

Tty T

T
qlzc

A=

(1.2a)

sy NSy m,
PR

where € is the material permittivity constant, q the elementary charge and 2£ the

. (original) length of the device.

T e

B

Lo 52 is the scaled intrinsic number of the device

62

n
i
(1.2b) c

{ny is the number of free electrons of the semiconductor per unit volume, ng » 10‘°/c33

for silicon).

€Upeq and n; are material constants while the length £ and the doping

concentration C specify the device.

For a realistic silicon diode, we have C 2 1017/CI3 and 2 » 10'2cl. This yields
A2 < 10-7, Thus the problem (1.1) can be regarded as singularly perturbed two-point
boundary value problem with perturbation parameter )\ and the standard method of matched
‘ asymptotic expansion can be employed. It turns out that a boundary layer (i.e. a small
region of fast variation) occurs in ¥, n, p at the junction x = 0. No layer occurs at

the Ohmic contact x = 1, those solutions which are approximated by the asymptotic

expansion are uniformly (in A) smooth away from x = Q.

Also § is small (practically 82 £ 10°7). We will, however, see later on that the

smallness of & has a weaker impact on the solution structure than the smallness of A
(52 is not a singular perturbation parameter since it does not multiply a derivative of a
dependent variable).
In the recent past, many papers dealt with the singular perturbation analysis of the
basic semiconductor device equations (e.g. Vasileva and Butuzov (1978), Vasileva and

Stelmakh (1977), Markowich and Ringhofer (1984), Markowich (1984)). The authors of these

papers concentrate on deriving the zeroth order terms of the asymptotic expansions of the
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solutions of the semiconductor device equations as A * 0+ (even in the high dimensional

case and for devices much more complicated than our symmetric diode). However, the
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question of the validity of these asymptotic expansions is a rather ungettled issue. It
was proven by Markowich (1984) that for zero applied bias (U = 0) there is a solution of
the semiconductor device problem which is close to the zeroth order term of the expansion
if A is small (even in the multidimensional case). For the one-dimensional case this
result wag carried over to small applied bias (|U| < ¢ where c¢ tends to zero rapidly as

A * 0+, & + 0+; see Markowich, Ringhofer, Selberherr and Langer (1982)). However, this

is of extremely limited practical applicability, since it only means that for sufficiently
high doping or for a sufficiently large device (large C or large £ implies small 1))
and for biasing conditions sufficiently close to thermal equilibrium (represented by

U = 0) the solutions are asymptotically represented by the asymptotic expansions. In

O e
LA A AR

practice, however, one is interested in the performance of highly doped devices when high

voltages are applied.

In this paper we show ~ at least for our sgimple model device - that there is a

solution of (1.1) which is approximated by the zeroth order terms of the asymptotic
expansion if ) is sufficiently small and if U is in some specified voltage range which

gets larger as A * 0+ and which includes physically relevant high-injection biasing

W N

conditions. This result in some sense justifies the singular perturbation approach for the

PACNEXS AL

semiconductor device equations.

. -

The paper is organized as follows. Section 2 contains the derivation of the zeroth

. &

and first order terms of the asymptotic expansions, the main result of the paper and the
functional analytic framework employed for its proof are given in Section 3. The highly

technical details of the proof are collected in the Appendices A and B.
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2. DERIVATION OF ASYMPTOTIC EXPANSIONS

We will now apply the approach of matched asymptotic expansions to the problem

s s s e v s

(1.1). Therefore we assume that the solution (¥,n,p,J) has an asymptotic expansion in

) . powers of A where each coefficient is the sum of a term which is independent of A and

of boundary layer terms. It was shown by Markowich and Ringhofer (1984) that the terms

representing the layer at x = 1 (at the Ohmic contact) vanish in zeroth and first

-
s 0
v

order. Thus we expect a layer only to occur at the junction x = 0 and make the ansatz:

‘e

32
s

Vix,A) = $(x) + ¥(T) + ;W‘(x) + b 1) + e

o
‘h
P

n(x,\) = a(x) + ;\(1) + At'\’(x) + A;\1(t) + ee

(2.1) - -
plx,A) = pix) + p(1) + dp (x) + Xp'('l’) 4+ .o

J(x) =T + A&, + eee

BN -
PR A
I I TR IR

. e e v - o

where the dots denote terms of order at least Az. Note that the current density J is

independent of x because of (1.14)., T = % is the fast independent variable. The terms

marked with °~' are independent of A and the terms marked with '“' are zeroth and

first order layer terms which are required to decay to zero as the fast independent

variable tends to infinity:

(2.2) (=) = $,(®) = a(®) =0 (%) = p(*) = p (=) =0 .

By inserting (2.1) into (1.1) and by equating coefficients of equal powers of A we will

obtain boundary value problems for the texrms in (2.1).

Construction of zeroth order terms:

By comparing coefficients of Xo and evaluating away from x = 0 we obtain the

reduced equations

or equivalently




(2.3) Vo — .
2p+ t
L ol

R 2(2p + 1)
f: For the zeroth order boundary layer terms we get (by comparing coefficients of Xo cloge
v
. to x = 0)
P Y. a
E. v=n-p,
ii (2.4) n = (n(0) + njy ,

P = ~(p(0) +ply ,

where the dot denotes differentiation with respect to T. Equating zeroth order terms in

i‘ the boundary conditions (1.te) - (1.1g) gives

5 F(0) + ¥(0) = 0, A(0) + n(0) = p(0) + p(0) ,
(2.5)

V) =¥

oy~ % B =p + 1, BN =p, .

By conditions (2.2), ¥, n, p have to be trajectories on the stable manifold of (2.4)

which is represented by
n=neice’ -1,

-poEY -1,

w=-¢2(;+;-;) sgn;(o) B

>

(2.6)

L]

(see Schmeiser and wWeies (1984)).

Using (2.6) we obtain the reduced boundary conditions from (2.5)

-v(0) _ ¥(0)

(2.7) n0)e eV, =y -2 BN =p, .

Equations (2.3) can be integrated and the solution of (2.3), (2.7) (reduced solution) can

be written as




| AL

e
PYL I

§e(—2—-4,

(b= 1)
Pmg -ty J(B21? - 25x)
{2.8) ..
n=p+1,

-- - - 2
¥ 2p + &n ') T

where the parameter b > 1 is related to U by

) 2 -
. = - + —s__ .
(2.9) 2 WBI 291 = fn Vb =: P(b)
Obviously
lim F(b) = ®, 1lim F(b) = =», F'(b) = - —2 5 - -;—b <0, be (1,
b+1 broe (b - 1)

holds. Thus, (2.9) ig a one-to-one relation between U € (~»,») and b € (1,»),
From (2.8) and (2.9) we get a first order (formal) asymptotic approximation of the

>ltage~current-characteristic:

U fn 1+/1 + 46‘ _ 1+71 + 464 + 23
2

(2.10) 3= n AN IR AN

26 Jasd + 23

We compute n(0), p(0) 4in terms of b by using (2.8) and rewrite (2.6) as

~

(2.11a) n=g f T (e* -1,
(2.11b) e e L LK

. b ¥ 1 ¢ _ % _b+1
(2.11¢) v /Z(b_‘e *goT e Vo5 -
(2.11d) ¥(0) = $(0) = -tn /b .

{2.11¢c) is obtained by observing that sgn ¥(0) = -1 (since sgn ¥(0) = 1 and

$(0) +# ¥(0) = 0). The unique solvability of (2.11c,d) and the exponential decay of ¥, n

-

and p follow from an application of the theory of Fife (1974) to the second order

equation in (2.4) (see Markowich, Ringhofer, Selberherr and Langer (1982}).

-7-
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Construction of first order coefticients:

Generally n-th order coefficients of matched asymptotic expansions are defined by

problems which are linearized versions of the problem defining the zeroth order

coefficients with inhomogeneities only depending on coefficients of order at most

(n - 1) (see Schmeiser and Weiss (1984)). The first order coefficients satisfy

M TPy
- 1 - 23 -
(2.12) Y= - = Iy +— 5 Py s
2p + 1 (2p + 1)
P} = - L 3, 0+ J P

= - Py »
22p+ 1 ' (2p+ 1?2
for the part which is independent of ) and

-~ -

LT T P

. e . .

(2.13) n, = — o'y, + ¥m, 4 ¥5,(0) + Pt 0) + vipt(0)
b~ 1

- - 1 -V, an - - e _ s -,
Py p=7 € Yy~ ¥py - ¥R, (0) = p¥'(0) = yTp'(0) ,

for the layer terms. The boundary conditions

9,000 + ¥,(0) = 0, n,(0) + n,(0) = p (0) + p (0)
(2.18) - - -

¥, =0, AN =0, BN =0.
hold.

in the form

The results of Appendix A(a) imply that decaying solutions of (2.13) can be written




(2.15) n, = v, + 0¥ -1 . n .
b -1
- G- 4 .
P, 51 v, + p(0)(e N+

where c¢ is a constant and

(2n(s) + s¥(s))ds

- L]
~ -p'(0) e
np p'( {

vit)-Y(s)

o
(2.16) p_= -p'(0) | e
P T

-w”w(S)(Zp(s) + sy(s))ds

122 ®
v te) [ wwp,t0)(e
8

; - -;(1) J
P °

Vi et ao() = p(w)]auds

Integration of (2.12) using (2.14) and (2.15) gives expressions for the reduced solution of

order 1
5. =22 (h o)< p
AP~ (np(O) pp(O)) ’

(2.17)
- ~ - 1~ x - -
Ry =Ry =Yy o V=2

2(2p + 1)
The constant in {(2.15) is ¢ = ~2-'/—S-—(b—.—-ll {p_(0) = n (0)). The expressions (2.15), (2.17)
(b + 1)2 P P
can be simplified using the following
Lemma 2.1: n (0) - p (0) = = L2 =) 44,
P P 2/b

Proof: Relations (2.3) and (2.8) imply

J(b -~ 1)

PO = = T

Thus, we get




n_(0) -—Mf . ""’(zn(-) + s¥(s))ds = )
2b b+ 1) o0

-_Jtb =1 U -w-) 2h (ws)

T be):
= 1as + lim [ se ¥ ®y(g)as)
25+ 0

T+ 0

By partial integration in the second integral we obtain

n (0) = 3B =V _ |-2b ] p(s)ds + lim (~te o + ! e-ws) ds)|
2/b (b + 1) T 0
3b - 1) . (1) T e
=22V ) onj plslds + lim (~te™¥ ) 2 gy [ Ve 1)ds) ]
2/b (b + 1) o T
- ® ©® = ® .
=22V (2 ) paras+ b-1) [ plaras] = - FEZN [ pearas
2b (b+ 1) 0 0 b 0

Similarly we show

- «
2 J(b - 1) °
p(0) = -2~ n(s)as .
P FY )

Hence, from (2.4) we obtain

- ® . - _ .
TB- 0 [ (n(s) - pladras = - T2 =D Ly

n_(0) - p (0) =
P P 26 o /b
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3.  THE REPRESENTATION THREOREM

The question to be answered now is whether and how well do the zeroth order terms of

the asymptotic expansions (2.1) approximate a solution (¢, n, p, J) of the problem (1.1).

The following theorem is derived by a straight forward application of the
representation theory for singularly perturbed two-point-boundary value problems given in
Schmeiser and Weiss (1984).

Theorem 3.1: For every U€ R and § > 0 there is A, = XO(U,G) > 0 such that for

A< XD(U,G) there is a locally unique solution (y, n, p, J) of (1.1) which satisfies
Vix,A) = 9(x) + 3(}’5) + 0(A)
n(x,A) = n(x) + Q(i‘-) + 0(A)
p(x,A) = plx) + p(§) + 000

J =3+ 0())

uniformly for x € (0,1].
Also the existence of asymptotic approximations of arbitrary order of accuracy can be

concluded from Schmeiser and Weiss (1984).

The theorem says that, for given doping concentration C (which determines § by

(1.2b)) and for a given voltage U there is lo > 0 such that for all diodes with length
28 > 220 the corresponding semiconductor device equations (1.1) have solutions which are

uniformly approximated (to order 1) by the zeroth order terms of the asymptotic expansion
(1.1) (note that £ and C determine A by (1.2a) for a given material and that A + 0
for L +» wvwhen C is constant).

Practically, this is a rather meaningless result since one is not interested in
applying a fixed voltage to various (sufficiently large) devices, but in varying the
voltage applied to a fixed highly doped device (that means A and § are small and fixed

and U varies over a certain voltage range).

-1t~
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To prove an approximation result which is uniform in a sufficiently large U interval
we basically proceed as Schmeiser and Weias (1984) did for general singularly perturbed
two-point boundary value problems but we always keep track on how small A has to be (in
dependence of § and the parameter b which is related to U by (2.9)) in order to
guarantee the validity of the results in Schmeiser and Weiss (1984).

We regard the problem (1.1) (after eliminating (1.1d), putting all terms on the left

hand side and expressing U as function of b, § by using (2.9)) as operator equation

u(b)
2 ’

n(o) = p(o),n(H) -3 (1+/1+a8%)p1) -2 (w1 + /14 88 =0

(3.1b) FX,G,b ] 31,1 * B2,X .

(3.12) By ¢ (hyn,p,d) = (A%47= (nep=1),n'= n¥'= 3, '+ pH'+ 5, WO) (1) - by ¢

The following spaces will be needed in the seqguel:

(3.2a) B, , = ¥7(0,1) x (cl0,1] N w'l0,1)2 x &

1,

(3.2b) B, , =170, x (t'0,1)% x &°

2,A

equipped with the norms l-l1 A’ l-l2 A Tesp. defined by
’ ’

- + A + 221y

(3.32)  H(¥,n,p )0, 5 5= 1¥D -
‘ L (0,1) L (0,1) L (0,1

+ Int + Aln't + ipl +Alp't + |a|

- 1

L (0,1) L 0,1 L 0,n (0,1

for (V¥,n,p,J) € B and
1,

(3.3b) Fu,v,woally o o= ful + vl + bt + laf
L (0,1) L (0,1) L (0,1)

-
for (u,v,w,a) € BZ,X'
w"'P(0,1) denotes the Sobolev space of real valued functions defined on (0,1) whose

weak derivatives of order up to m are p-integrable for 1 € p < ® and essentially
bounded for p = * (see Adams (1975)); i.e. £ € WAP(0,1) iff £'i) e tP(o,1) for

0 €i€m. We denoted

e

Y

o - - S
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1
(3.4) el = ([ l200)Pax)VP, 1<p e - = sup |£(x)] .
1Peo,1) 0 L (0,1)  xe(o,1]

and |a|, 1= max |a | for o= (@y,00008 ) € 2", Also the induced matrix norm is
1€i¢n

denoted by |¢|,.

N

From Sobolev's imbedding theorem (see Adams (1975)) we conclude that f e wllo,1)

implies £ € Cg(0,1) (f 1is continuous and bounded in (0,1)) and that Ifl _ <
L (0,1)
const (10 s, ) holds for all £ e w's1(0,1). Therefore the functional
L (0,1) L'(0,1)
L + Auen defines a norm (for A > 0) on c(0,1] n w'*'(0,1) under
L (0,1) Lo,

which this space is a Banach space.

We denote the asymptotic expansion (2.1) (up to the first order term) by

(3.5a) v (x0) = §x) + ¥(E) + A8, 00 + 2w ()

{3.5b) n (x,A) = A(x) + n(f) « A 0x) + Mn (F)
(3.5¢) P ixA) = Blx) + p(F) + Ap,(x) + xp1(§)

(3.5d) J M) =T+ Ai, .

The terms on the right hand side of (3.5) were computed (up to ; which solves (2.11c¢,d))
in Section 2. Clearly V¥, , n,, p, and J, depend on § and on the parameter b.
For the representation proof we proceed as follows: (A) We compute the residual at
(¥genyrPyedy)
(3.6) x(2,8,b) = 'A,s,b(*-'“a'p-"’n’
and estimate lt(X,G,b)lz'x € R(),6,b).

(B) We compute the Frechet derivative of PX,G,h at (v.,n‘,p.,.!.h

{3.7) D(*,n,p,a)'X,B,bwl'na'pn"’n) ] !"x -+ BZ,X

-1
and estimate its inverse ”D(v,n,p,a)'k,G,bwn'“a'pa"’-)) lB -8 < K‘(X,G,b)-

2,0 1,




e %
4 8 s
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{C) We estimate the Lipschitz constant of Dt,n,p,J’l,G,b H ’1,A » !‘"1,A"2,A’ in a

sufficiently largs sphere about (v.,n.,p..J.)a

(3.8) 'nt,n,p,JFA,G,b“'n'p"” - DO,n,p,J'l,6,b“a'"n’pa"’n"n1'lonz A
’

< xz(lﬁvb)'" - 'a'n R p.,J - Jl“hl
for .(v - ’.’n - n"p - p.,J - Jl)"l,l < P.

The bounds R.X; and K, are explicitly determined in the following

Lemma 3.1. There are constants Ao,Co,c, /€5+C5,0 > 0 such that the estimates

(3.9) R(L,8,b) € c A2 [—Lr ¢ (20 1)6Pun /B) V2]
(® -1
s
(3.10) x,(,8,8) ¢ 22

hold independently of the radius p for 0 < A K ko, 0<8 ¢ 60. If, additionally

(3.11) A(tn Pl——7 + ®(tn w2 <o
-1
then
(3.12) X,(A,8,b) ¢ C,|—L—z + (2n /B)?|
T
holds, too.

Proof: The estimate (3.9) is proven in Appendix B, (B.1); (3.12) in Appendix A, Lemma A.4
(which uses (3.11)) and (3.10) follows immediately by linearizing 'A,G ,b at

(t.,n.,p.,J.).

We will employ the following version of the implicit function theorem (see Chow and

Hale (1982)):
Lemma 3.2. Let F be a Lipschitz-continuously Frechet differentiable map from the Banach
space B, into the Banach space B,. Assume that the equation P(x) = r has a solution
x, which is isolated, i.s. the Frachet derivative D F(x,) : By + By 1is boundedly

invertible. Let the constants Ky and K; satisfy

-id-
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-1
1D, F(x,)) Ia{a‘ L S

D F(x) - °x""a"n1*nz < Kyix - x.l“ i Ix - x ) <p for soms p >0 .

Then the problem F(x) = 0 has a solution x which satisfies

(3.14) Ix. - xi < 2x1lrls

B, 2

if

£ 1
Irt, < min(zf~ ——)
2 1 2KE,

1

2K1K2

holds. The solution x is unique in the sphere with radius and center x,.

The main result of the paper is the following:
Theozem 3.1. There «re constants k‘,ﬁi,c‘_.c_,b’,b_ > 0 such that the problea (1.1) has a
locally unique solution (¥,n,p,J) for A € k1, $ < 61 if either
U U 16
(1) 3> ¥, and x(z Vor ¢ 1) <¢c

+

1.4 u 19/2 -U
(11) %<vn and A(fn 1)6 (*51'5”) /2,70 ¢ ¢

holds. The solution (¥.n,p,J) satisfies the estimate

(3.16) W- (G0, +n-(@emi,  +ip- (Rl
L (0,%) L (0,1) L (0,1)
) D‘_A(-g- -V * 1]1/2 in the case (i)
+ {3 -3f <

D283 (g, - 5+ 1372 in the case (11)

Proof: A simple calculation which uses (2.9) shows that (i) and (ii) imply (3.11}.
Therefore the estimates (3.9), (3.10) and (3.12) of Lemma 3.1 hold and the implicit
function theorem (Lemma 3.2) can be applied to conclude the locally unique solvability of
Fx,é,bw'“'l’"’) = 0. It follows that there is a locally unique solution (¥,n,p,J) if

R(A,8,b) € 1 . This is guaranteed by (3.11), too. The inequality (3.16)

2K3(1,8,D)K, (2, 8,b)
is obtained by estimating the first order terms of the expansion {(2.1) (see Appendix A,
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Lesmas A.d. 18, A.d. 20) and by observing that the error bound given by (3.14) (which
includes the first order terms) is sharper than (3.16).

We now consider a realistic silicon diode with the numerical values of the parameters
given in Section 1. The cases &) and b) in the formulation of Theores 3.1 yield ’
approximate upper and lower bounds for the applied voltage V = UgU. With
Cy = C. = 0(1) we obtain
(3.17) -0,2 Volt ¢ V £ 0,8 Volt
The upper bound represents a large forward bias for the considered device. Thus our theory
covers a realistically large forward bias range.

In the reverse bias case application of up to =10 Volt is of practical interest.

Apparently the reverse bias range covered by the presented theory is much smaller than
desired. We conjecture that this is caused by the fact that the space charge region
wideness with increasing reverse bias. This limits the validity of an ansatz which
strongly uses the “"boundary layer behavior® of the solution.

Figure 3.1 shows the reduced potential ¥, Figure 3.2 the reduced hole concentration
B and rigure 3.3 the reduced current density J as given by (2.8). The surfaces were
obtained by parametrizing the curves ¥, on the x-interval [0,1] (n-side of the

device) with the scaled applied voltage

nic =

ranging from g = «10 (=-0.5 volt reverse bias)
to %- 40 (2 volts forward bias). The reduced electron concentration n is not depicted
since it is given by shifting p by the value 1, i.e. h =p + 1. The extension of the
reduced solutions to the interval [~1,1] is obtained by using the symmetry conditions
n(x) = pl=x), B(x) = =${-x) .

The reduced current-voltage characteristic J = J(U) exhibits the well-known exponential
behaviour (see Sze (1981)).

The layer-equations (2.11) were solved numerically. Figures 3.4, 3.5, 3.6 show the
layer-terms ;(f). ;(*) and 1;(1‘) resp., again as surfaces parametrized by y’i varying in

the range specified above. Figure 3.4 demonstrates the increase of the layer jump and of

the width in the potential ¢ as the reverae bias increases. Figures 3.5, 3.6 show the

-16=
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depletion of carriers occuring in the space-charge-region for reverse bias and the increase
of the carrier concentration in the space charge region for forward bias.

Also, the 'full' singularly perturbed problem (1.1) was solved numerically (by using
the general purpose two-point-boundary value problem COLSYS authored by Ascher,
Christiansen and Russell (1978)). Figures 3.7, 3.8, 3.9, 3.10 depict the potential vy,
the electron concentration n, the hole concentration p and the electric field '
resp.

A comparison of the full solutions ¥,n,p and the reduced solutions ;,5.5 clearly
shows that V,n,p are approximated well by 3,5,5 outside the layer-region on the whole
considered bias-range, in fact the corresponding reduced and full solutions agree at least
up to plot accuracy outgide the layer. The current-voltage characteristic J = J(U) is
not depicted since it is graphically indistinguishable from the reduced current voltage

characteristic J = J(U) as shown in Figure 3.3. Note that the depicted bias range is

larger than (3.17).

Figure 3.10 demonstrates the occurrence of a very large electric field within the

layer {(note the scale on the PSIP-axis!), which is explained by the asymptotic expansion

for ¥': .
- 1 *
VA ~ BT 4 W(F) e
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A APPENDIX A: THE LINEARIZED PROBLEM

We shall analyze the linearization of problem (1.1) at the formal approximation of the

solution, which has been constructed in Section 2.

Thus we consider

g

IR Y

XZ;. =n- ; + ‘1 [

. ~

- - 1 2 - b . - - - oo 3
n' -u-+x¢+w;+v1)n+(n+n¢xn1+xn1)v t3ta,,
(A.1)

-

-
~

. P
R (A S ARLAE NN S IR PR R - R

0% %

~ 3 ’

f; ¥(0) = a,, n(0) - p(O) = a,, ¥ =a,, 1) =a, A1) =ag,

=~ with ; - (;.;.;,3) €B and a = (aq,...,ag) € B . We proceed as in Schmeiser
~ 1, 8 2,A

;' and Weiss (1984) and split the interval [0,1] into two parts [0,x3] and [xg,1)

s

i with xg big enough such that the layer terms are small in ([xg,1]. We choose

xg = 2A&n % v(0) = 2Ato. The constants in conditions (i) and (ii) of Theorem 3.1 can be

chogen such that x5 < 1 holds. On the interval (0,%] we

o0 8

use T as independent

variable and consider instead of (A.1) the egquivalent problem

- 01 =n-p+ b1 Y
- (A.2) n, = Wn‘ + (n(0) + n)v1 + b2 + Bzz ’
5 | -Wp1 - (plo) + p)0| + b3 + B3z ’

for 0 ¢ T < 27,

~ ~

2~ _
ATy = n, - byt by

~
~

~ - - - ~ J

[ —] ' hed
(A.3) n, = ¥'n, + (n + Xn,)vz +3+b, +B.z,
X ;- - -5-; - (; + A; );l -3, b +8 2
2 2 1772 2 6 6° ¢

a for x; € x €1 and

-28-




NIRNOE
‘l“l.,ll

¥,000 = by, R (0) = F(0) = b, Fy(1) = by Byt = bygs BN =By
(A.4)  ¥,2T) = Vylxg) + by v (21 = AV (x,) + byy
n‘(2t°) - nz(xo) + b“, 91(210) - pz(xo) + b15 B

where 2z = (;11;15911;2ln25920J) € Balx and b = (b1,-o-,b‘5) e B‘,X with

B, , =W (0,21 x (L'(o.zzo))’ x W'y, 1) x (n'(x°,1))2 x R and

3,7
- -
By\ = L 10,2Tg) * w0, 2t n? * 70, M) x (w'(x, 112 % &, ve introduce Mzly, o
B and bl on B defined as the sum of the appropriate norms of the components
3, 4, 4,

of z and b respectively. The by in (A.2)-(A.4) are determined by the a; in (A1)

and obviously
(A.S) Ibl4‘x < ."2,X
holds. An estimate of the perturbations Biz is given in

Lewma A.1: Let Bz = (o,szz'53z,0,55z,86z,0,...,0) € B"x- Then

1 1 4 =3
(A.6) 18zl < c,Atn v | + 6%D (2n /D) 128
4, 1 by Ve 3,2
holds.

Proof: Comparing (A.1) to (A.2), (A.J) gives

=, 2= A~ - _ < - A S 3
621 (AY® + X V; + 201)n1 + (n ~ n(0) + Xn‘ + Xn‘)w‘ + A 5
Bz = —(A* + 229+ AV )B. =~ (p = PIO) + Ap, + AD )i - 3
3 1 1Py ~ P TP Py Py ¥y 2
1 - A~ ~ ~ o~
Bz = (x v+ 2y ¢+ Vo, + (n + An )V .

. VP,
8,2 = =(3 ¥+ A0] + ¥, )p, ~ (P +py)¥;

we use the Lemmas A.d.18 and A.d.20 to obtain




» 18zl <
- 2 L'(o,zro)

2 ~
- + A zxolﬁ;l - + A21°Iv| ]ln,l +

L (0,x,) L (0,x,) L (0,») L-(0,2'I’o)

< [Azr 19

+ |21 x 1p*l + A2t _lp | + 22t 1n 1 ]|$ ' +
0% L"(0,x,) O oy O Vit Ve,

+-;— |3| < constl“.n % /n'd (b 1 0 + 64) +

+ 2%1n 1+ /1arB /5 (2=, §%/4n/E) + an 1 /anfs (L + 645 (an/B)%?)

+ 64 4 Aln-—u[tnv’— (———1+ 64/11'»’;) +

+ A{tn -})2lnf5 (b

+ 6% (lnﬁ:—)s/z) + XJI:I3 xS

+ AMn & /0B (—2
/b - 1

< const A in -‘x( v (l.m/g):’)lzl:‘hx .

/b -1

Analogously we get

+ 6%% (lm/F)Z]lzl

1
18 =zl < const A tn < (
HENTEN Y e

3

The Lemmas A.d.6, A.d.19 and A.d4.20 give

lﬁszl < IBszl - <
L (x L (xo,1)

3
-

< [X»IWI + AN ALU LI -
L (21 ) L (0,1) L (2T0,~) L (xo.ﬂ

s[5 m gl g <
L (21, L (27,,=) L (x5, 1)

< const|) i/ + 3

+ 8%/ /b) + A &n % + 8% (ln/_ﬁ)s/z) +

b ~




b - tn /B + Al=—z n F+ 848 (2/B)> %) 1z, <

+ A
/b - 1

b

< const A(——1— tn 3 + §%B (2ar5)% )1zt , -
XK ‘

Analogously we obtain

IB6zI

1 1 4 5/2
< const A tn + + 8%B (2a/B)” % )128 .
L’(x°,1) /b - 1 x 3

For the application of a contraction mapping argument to (A.2)~(A.4) we analyze the

unperturbed problem

PR - .s
(A7) n, = vn1 + (n(0) + n)v1 + d2 .

Py = ~¥p, - (P(O) + pI¥, + 4y,

for 0 < T & 21,

+
Qs

~ - R
] -t ? - L ==
p, = v'p, - (p * Ap ¥, = 3 o ¢

for xq < x <1 and

vy(0) = d,, n,0) - p4(0) = dg, V(1) = dg, pytt) = a,00 n,(1) =d.y .

(A.9)  B12T0) = Fylxg) + dyye Fy(2rg) = ARxg) Gy

R (2T5) = nylxg) + dyge Pyl2Tg) = pylxg) ¥ dyg v




where we introduced the new inhomogeneity d = (d,,...,d45) € B‘ A+ In order to identify
’

slow and fast variables in (A.8) we apply the following transformation:

?2 =t-u
) Wi «/2p+ 1w
' (A.10)

~
n

2.-(5+1)u+w

~ =,
P, =Pu +w

Substitution into (A.8) yields

i ' = ~/2p + 1 v -

(28,728 + 1 v+ 20w+ 3) + 22— (g - o) ,

2p + 1 2p + 1
. Wt g rrur 2 e L _a,
: 2(2p + 1) -
i (A.11) 2p + 1
" - p - . Pd. + (p+ 14
K w' = % u - L — J z W~ _1 T2 — $ '
/25 +1 (2p + 1) 2(2p + 1) 2p + 1
-‘ 2p = . 4 -4
- th o= - LI — = ¥ - 13 f 3.
- /25 + 1 (2p + 1) 2p + 1 2p + 1

s

As in Schmeiser and Weiss (1984) we apply a decoupling transformation:

;_-. - Ap\ As

. W W u + v,
" 2p + 1 =

N (A.12) p_ 22+

- - 2Xp’

-~ t=t - u .

» 2p + 1

With these transformations (A.7)-(A.9) become

AR
%50 Ve

WERRAN A
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(A.13) n,

3
~

py = ¥py - (p(0) + plyy + ey,

for 0 € T ¢ 210,

Mt o= /25 ¢ 1 v+ e * z‘i

(A.14)
Av' = -/2p + 1 u+ e, + 352
w = ~ J 3 w - _’ J+e + 26;
(2p + 1) 2(2p + 1)
(A.15)
rU— z v - _1 Tte,tEp
(2p + 1) 2 + 1

for xq ¢ x<1 and

a,(0) - By (0) = ey, u(f) =e.
+ 5112(1). E(1) ~ e,

01(21 ) = t(xo) - u(xo) te, + E13z(x°) '

(A.16) .
;1(2‘ ) = lZp(xo) + 1 v(xo) + LI

n (21 ) = -(p(xo) + 1)u(xo) + w(xo) te,* E1Sz(x0)

91(21 ) = p(xo)u(xo) + w(xo) teo + 316z(x°) ‘

where zZ= (W,lnjlp1l“lvl;l€ﬂj) € BS,X and e = (e,,...,e«ls) e BG,A with

W' ®0,21.) x (170,21 112 x (L(x ,1)% x R ana B, , = L (0,2,)
“ “%o 0’ an 6, A “%o

Bga ™
R9

1 2 1 L4 1 2
(L (0,210)) x L (x . ,1) x L (xo,1) x (L (x0,1)) x . As norm "ls,A on BS,A we take

the sum of the natural normg of the components of z, whereas in the definition of




~p .

TR NN

LN, A

|

"'G,X on BG,X we replace

two lemmas give estimates for
of z:

Lexma A.2: The estimate

le ! by X-‘lo 1 + The following

1 1
L (xo,i) L (xo,i)

e in terms of d and for the perturbations Bi; in terms

b
"'6,1 < const 53 ldl“'A
holds.
Proof: Comparing (A.7)=(A.9) to (A.13)-(A.16) yields
e; =4 for i=1,2,3,
0 = =2 (g - dg), o 1 g
4 = 2 ~ d95), &g = 4
p+ /2p + 1
- Ap q Ap d
J - 1 S - 1 6
eg = — d+[p+_ )_ +(p4>‘l—_ —_
2(2p + 1) 2p+ 1 2p+ 1 2p+1 2p+1
o = (1- 2dp, 4 - 4 . 40 ~ 949
7 = - —_— = ’
2p+ 1 2p+ 1 10 2p,+1
_ ey ¥ ey, + g4y, I e
e11 2p, + 1 %2 T Y Zp, + 1 '
ej = dj_1 for j = 8,9,13,...,16 .
Obviously
regl | <<:onsc[|5|l-_'—-|1 a1 + 1d.1 +0d il
L (x°,1) 2p + 1L (xo,1) L (xo,l) L (xo,l) L (x5, 1)
The estimate (A.d. 11) implies
— cr—2-1 I8 =2:':.
2p + 1L (xy,1) (b+ 1)W1 - x 1L (0,1)
with |J] < constf%1}~%)2 we obtain
le < const b 141
L‘( 1 b - 4,A
XO,
=34~
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L A
e ‘.

NN

s e e

Using the nonnegativity of E in estimating the remaining components of e, the result of
Lemma A.2 follows.
Lemma A.3: Let Ez = (0,0,0,542,....372,0,0,0,3112,0,2‘32,0,2152,5,62) € By ) where

Bg A is as Bg yo but with the fourth component L-(x°,1) ingtead of L’(x0,1). The
’ r

R -1
norm lela"A on BE,A is defined by replacing A le4l 1 in le.G,A by
L (x0,1)
fe « Then
L (xo.1)
ez . < A(— Y H]
6,A 2 2 5,7
(b - 1)
holds.

Proof: Using (A.11) and Lemma A.d.20 gives

- P, - -
ez, < const A(l——— + 1902 S + 1)"'5,)\
L (xo,l) 2; + 1L (x0,1) L xoc )
€ const X(/—b—;—1 + 64/an/B + b + 64)I;.IS N
’
(b ~ 1)
< const k(——ll——i + &4 ln/g)l;ls A
(b - 1} ‘
152, < const A |3|I—1—1 _ TN
L (xg,1) (2p + N7 L (x, 1) ‘
< const A( b 3+ 64]l2|5 A
(b - 1) '

Elementary calculations show

- - - -2 - - -

JZp1 Py 2p1 J2 2Jp1 P, -

= 7 -+ (= 32T = 575 VS 3Y YT 2 R
(2p + 1) 2p + 1 (2p + 1) (2p + 1) (2p + 1) (2p + 1)

Esz - A[[

and

From (2.8) we get

~35«




. 1 b = 1,2

.. —_— < const( ] .

.- - +
@+ 0720, B

o

The Lemma A.d.20 and (A.d.12) give

- T3] S < const x[(___“’;‘ + 6‘/3.:/5)(—*’—2 + 6% +
L (xo,1) L(x_,1) (b - 1)

- 0

1 4 b-1 8 b2 8y(b - 1,2

. + =+ §V /B ¢ 2sm ¢ S 4 (¢ 87 ) (g5)

- /b - 1 b (b - 1)

e (=T, B (B v 6% 2 i, <

b 2 b S5,
(b - 1)

- < const A(—b-—— + 64¢£m’3]lil

. 2 5,A

. (b - 1)

- AJ A51

The perturbations in the boundary conditions contain the terms v and —_—u

D 2/2p + 1 p + 1
at x = x3 and x = 1. Estimates follow from Lemma A.d.20.

:-_ In order to be able to apply a contraction mapping argument to (A.13)-(A.16) we
analyze the unperturbed problem
-~

o (A.17a) Vi=ng TRt g

(A.17b) n, = lkn1 + (n(0) + nW‘ + f.z '
_-:..' (A.17c) Py = ~¥p, = (p(0) + PV, + £, ,

o for 0 < 1 € 2%

ol

- Au'--J25+1v¢t4,
(A.18)

2" Av'--¢25*1u*f

5 ¢

vy -36-
.




;'- -J 2;‘ _1 3+f6, )
(2p + 1) 2(2p + 1) .
(A.19) i
{p—} 2;—_1 e, [
(2p + 1) 2p + 1

for x5 ¢ x < 1 and

~ ~ ~ - - L
W1(O) - fB, n1(0) - p1(0) = fg, u(l) = f10, w(l) = f’1, t(1) = f12 ’
w1(21°) = t(xo) - u(xo) + 213, W1(210) = ¢2p(x0) + 1 v(xo) + f14, S
(A.20) -
~ 2 - - - .
n,(2T°) (p(xo) + 1)u(x0) + w(xo) + f15 .
p'(ZTo) - p(xo)u(xo) + w(xo) + f16 ’
where £ = (f,,...,f4¢) i8 from B or BY ,. The differential equations in problem o
1 6 6, 6,

(4.17)~-(A.20) contain the linearization of the layer equations (2.4} in (A.17), a standard
linear singularly perturbed system in (A.18) and the linearization of the reduced equations
(2.3) in (A.19). These systems are analyzed in the paragraphs a), b) and ¢} of this
appendix. We then substitute (A.a.1), (A.b.3) and (A.c.1) into the boundary conditions
(AR.20). We replace To by ®, x3 by 0 and vh(xo) and uh(1) by 0 in the
coefficient matrix of the resulting linear system for the ci's- Thus, we solve a system
of the form Ac = n instead of (A + Flc = n, where

x =1
IFl, < C3()‘/b__+_1 (2B) 32 + exp(-—o—A——] + An -;T Yinv'd) .

b-1

This estimate follows from the Lemmas A.a.3, A.b.1, Taylor's theorem and the estimates in

the proof of Lemma A.d.20. The system with F = 0 is given by

‘@
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P/ VA AT NN

c 1 - C L = £
7 2py + 1 9 2(2p, + 1) 1

2 1 -
——— - —— -
€72, + 1 8 2p, + 1 fi2~ M
1 /b -1 b -1 b -1 2(b - 1)
(R.21) ey 3 -c + c +te —c. 2 _ . =
2/ /b1 b e S g T s T 9 T 8

= f13 - WP(ZTO) + 2wp(xo) - vp(xo) .

1 = - ‘.V -
€13 % /5 f14 wp(ZTo) vp(xo)

C1 + c

b -
- VP(XO) =7 + wp(xo) .

15
1 1 b+ 2 1 b -1
-Cy +c rasr SRS -c —s - ¢ =
2AT” 3b 1 4£(b+1) 5b 1 7b+ 1

~ 1 -
f16 pp(2‘to) + Vp(xo) b——f + wp(xo) .

Lengthy calculations show that the coefficient matrix satisfies

-1 b
le € ¢4 5= -

a -1

with the constants in Theorem 3.1 chosen appropriately, the estimate

-1 1
|2 [ olFle < 5

© 2
holds, which implies the nonsingularity of A + F and

b
< 2C4 F——

Using the estimates on the particular solutions in lemma A.a.%, in (A.b.4) and (A.c.2) we

la+ 57

o

obtain an estimate of the righthand side n of (A.21):
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AP ¢

e ikl
1.

[ —
Inla ¢ const(p—g + ta/bjitlg

i This implies for ¢ = (cqy,...,cqlt
x (R.22) lel, ¢ const(—Ee + [EYIITd]

. - ) 6,

&3 (b~ 1)

. using (A.22), the estimates (A.b.4), {(A.c.2) and Lemma A.a.l! we obtain

izt < const(— + (ln/g)z)lfl o
. 5,2 3 6,7 R
(b -1) T
The difference between I'I6 A and I-l; N only appears in the fourth component. Using T i
’ ’ . e
(A.b.5) we immediately obtain - ,..

) - t

(A.23) iz) < C [ 1 + (lnfi)z)lfl' e o
S,A S 3 6,A S
(b - 1) LI

- Lemma A.3 and (A.23) imply the condition e
& (A.24) ¢, CA(—L— + s4(anvE)5/?) < 1

- 25 5 2
(b -1)

‘_::- for the applicability of a contraction mapping argument. With the constants in Theorem 3.1
_ chosen appropriately (A.24) is satisfied and the scolvability of problem (A.13)=(A.16)
/‘

follows. Furthermore we obtain the estimate
:2 1zt < const| ! + (lnfs)z)lel
.. S,A 3 6,\ '

o (b - 1)
~— and from Lemma A.2
(A.25) 1zt . < const{— + B iar, | .

AT 5,2 4 4,

. (b -1 T
o The transformations (A.10) and (A.12) give IR
b .- .

s Izl3,x < const 57 '“5,1 . .

-~ Thus, (A.25) implies .-..- N
o 1 2 = e
(A.26) 20, < ¢ g+ (2nv'D) )m:"A . A
(b - 1) .

."‘. If the condition

1 1 4 5 1

C Certn 1 | Ti7z + § b)) < 5
o (b = 1)

\;-

-
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is satisfied (which again is guaranteed by the assumptions in Theorem 3.1) we can apply a

contraction mapping argument to obtain solvability of problem (A.2)-(A.4) and the estimate

+ u.nIS')z)lbl4

1
5 Al

(A.27) LEL PSS const;
(b -1)

3,

Thus, problem (A.1) also has a unique solution ;- The differential equations in (A.1) can

be used to show

and the estimate

b
B~ lzl:"A .

Finally (A.5), (A.27) and (A.28) imply the validity of the

(A.28) l;l < const
1,2

Lemma A.4: Problem A.1 has a unique solution ; and the estimate

+ unB)?)1a, |
[

~ 1
Iyl < const(
1.2 (b - ‘)6

holds.

a) The linearized layer equations.

We consider (A.17). Integration of (A.17b,c) and using (2.6), (2.8) yield

~ ¥ bWy L=
LET nq .

(A.a.1)
~ _ %4 v Lt
fs b~ 1 v

1+qu

where C3, C4 are constants and

It e@(r)-@(a)

21‘0

;q(r) - £,(8)ds ,

T - -

~ ~¥(1)+¥(s)
T =

pq( ) ] e

£f.(s)ds .
0 3

The monotonicity of V¥ immediately implies the estimates

(h.a.2) 1 < ugd T < 1£) .

[ |
"q L”(0,21,) L,2t) 170,21 L'0,21.)
“o o “Co ‘o




Substituting (A.a.1) into (A.17a) gives

- - - ~ e -
- ~ b v 1 B 154 V__4 v, ~ _=
- (A.a.3) Vo= (g e v g7 IV, t ey = +h =Byt
;;j The homogeneous part of (A.a.3) has the linearly independent solutions ;(t) and
- : T2
WO v z(l)dn. For the construction of a particular solution of the inhomogeneous
0
equation we use the results of Fife (1974) and get
1 - : . T, ~ Ay
. 0, (1) = c w2t IvT) | v S(s)as + c, ¥y (o) ~
e
- Ta, - vw _ %4 —¥(w)
-wn | v W] v(u)[c3. Woele |du
0 s /v
;g 2 -
> + { Viwin (u) = p (u) + £,(u)]du}ds
(A.l-“)
- . T :_2 < ey
= e ¥21W(T) [ ¥ T(m)ds + c ¥(T)¥ (0)
0
- t ;(l) ‘.‘-2
-~ AL ] (1 -e W “(s)ds
- o
= ST e ) ~
~- - e W) | (e S —v (s)as + ¥ (1),
- 0 v P
) - - T, AP ~ ~
" where ¥ (1) = -¥(1) J v e | V(u)(n (u) - p (u) + £, (u)]duds. Differentiation of
. 0 8
- (A.a.4a) gives
N : R u Ti, o1 N R <4
“ (A.a.4b)  ¥,(T) = c,W(zto)[(n(T) -plt)) | ¥ (s)ds + ¥ ()] + €, (r(T) = plr) v '(0)
0

- - T 2 - i :
- e lnm - pr [ (1= e Riayas ¢ (1 - ¥ -
0

-"-
-.. R

~ - .

SR ] R I .
RAEAR . .
VIR A VLA




A T
PR R

- . .
\

- - T N " -
= cglntny = peny J @™ ) 2P v (@) L yy L)

LY

] /b Vb
o
v + 'v’pm ,
~ The estimates of the solution are collected in
_:' Lemma A.a.1:
~ a)y v < const(Vtn/b |e,| + |c,| + ta/b legl + ta/b e | + a/bagrg 4,
- ,
- L (0,21,)
~ [1]
b) l;1l - < const{(1 + /an/D) Ic‘l + /ﬁ le,| + ' |e,]|
- 2 3
L (0,210)
+ b e | + (1 s l.n/Suns'x) .
c) I;,l - < const(( LIS /in/b) |c1| + ﬁ [czl +
L (0,21’0) b - 1

5 + 1+ /b)) Jegl + (1 + ta/b) Jey] + (1 + 2o/b) 151 ,)
- ~ /b /b
d) |p1| - < conat( Py |c1| + 57 |C2| + |c31 + |c4| + |f|6 A) .
o L (0,2ro) v
Proof: The results are obtained by using the Lemmas A.d.4, A.4.5, A.d.8, A.d.10, A.d.11

and A.d.12 and the estimates (A.a.2).

. ~ - _b vit)> ~ ~ - -1 -a(r)
With np(T) T-T e WP(T) + nq(f) and pp(t) B e

Wp(‘l') + pq(‘l) we

-
K define

: V(= Ym - §n

: nh('r) - n.,(T) - np(t) ’

. Pyp(t) = By(m) = B (n) .

We have

a2
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X Lemma A.a.2t

e. A /fi-1__ b-1 b~ 1
IR XN 74 S s i '

§ T+ S yBb + 1)
S .
- ~ 1
:: b) t:: Wh(ﬂ - C‘ i
AI

c) limn (1) =c¢c b + c 1 -c b

™ 1 3b+1 S%b+1’
L 2o 2
2" - 1
‘ ~ B 1 b+ 2
- 4) lim p (1) = =¢ +c +c .
2t h 1 3b+ 1 4
1o 2% < 4 Vb (b + 1

s Proof: The Lemmas A.d.3, A.d.5, A.d.8, A.d.9, A.d.11 and A.d.12 immediately imply a)-d).
o Lemma A.a.3:
. ~ ~ /b= 1 3/2
- a) v (21 - ¥ (=) < const A [rmy (4n/'D)
- by | (27g) - F,(=)] < const MtavB) Y2
_ ~ o b+ 1 3/2
c) Inh(zto) nh(")l < const A /———b — (¢n'D)
-2 Q) |5, (21 = Byt < const A —1— (/) ¥/?
N b2 - 1
- Proof: The results can be shown by combining the Lemmas A.d.6, A.d.9 and A.d.11-17.
b) Analysis of (A.18)
::' The analysis of (A.18) is facilitated by the transformation
- (A.b.1) umu+v,
4 vEpe.v,
ol Using (A.b.1) we obtain from (A.18):
o Aut = ~/2p + 1w +-2'- (£, + £5),
Y (A.b.2)
- et =J2p ety e g, - £ .
Z 4 5
-
- -43-
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The behavior of solutions of (A.b.2) is characterized by

Lemma A.b.1: Let Ay' = -a(x)y + f£(x), x € [a,b], a(x) > @ > 0. Then there is a

solution y, of the homogeneous equation and a particular solution Yp which satisfy

PN

: iyt . 1, y (@) =1, [yb)] <exp(-5(b-a)),

- L (a,b)

' o clest o, oy <2 i, .
Prta,d 2 1%(a,bp) P 1 (a,b) L (a,b)

x x x
Proof: We use y,(x) = exp(-2"' | a(t)at) and Ypix) =4 ! | exp(=A 'y a(s)ds)f(t)at.
. a a t
An analagous result holds for a(x) € =a < 0. Thus, we have

(A.b.3) u = csuh + cevh + up + vp .

vV = csuh - csvh + up - Vp »

(A.b.4) hud . vt < const(|c.| + e | + 1£1
g0 L lxg, 1) 5 ¢ 6.3

(A.b.5) (] vl < const(|cg| + |eg| + ez ) .

» ’ L
L (xo,‘l) L (xo,1)

c) The linearized reduced equations

Integration of (A.19) gives

X
—— | 2B(e) + N erae ,
2p(x) + 11




x
tp(x) = ZUb(x) + i (£,(8) = 2£.(t))at
()}

Since (25 + 1) 4is monotonically decreasing the estimates

o < constl|c,| + |co| + 1e0, 1),
L (xo") !
(A.c.2) " < constl|c,| + |cg| + [eg| + 1ev, ),
p L (xoy‘) ‘
151 = Ie,|
hold.

d) Collection of technical results
We now state some useful general results.

Lemma A.d.1: Let y be the solution of the initial value problem

v =altly + £(1), 130, y(0)= Yo v

£(1)
a(t)

»
with a,f € C[0,%=) ), a(t) < =p <0 for T » 6. Let y, = lim +« Then
Y”

fy(ty =y | < |y0 - y..le-"rt + %-e‘“‘lzlf + ay_l +

o«
(A.d.1) L (0,1/2)

1
+ ; 1£ + ay.'
L (t/2,7)

holds.
Proof: We set u =y ~ y_. Then u is the solution of
u = a(T)u + h{t), u(0) =Yy " Yo

where h(t) = (1) + y_a(t). Thus,
T T T
u= (yo - y.)exp({ a(s)ds) + é exp(f a(u)du)h(s)ds
5
We gplit the integral in the particular solution into two parts and use the upper bound of

a(tT) to obtain the estimate

*) gecio,») <==> (g€ Ci0,) and 1lim g(T) exists and is finite.)
T 00




. T
lato)] ¢ Jyg = vole™™ + ) e ner]as <
0

<lyg - vale T e T2 g
L (0,t/2)

+ 1.2,
L (/2,0 ¥

FEYRPORAT  RAp

2y

.. which implies (A.d.1).

Lemma A.d.2: Let y be the solution of

y=alty + £(1), 120, y(=) =y_,

£(1)

m. Then

with a,f € c{0,#], a(t) »u >0 for T30 and y, = -lim
oo

(A.d.2) ly(r) -y, < -;— It + ayl .

L (t,»)

Proof: The function u =y -y, is the solution of

U=al(tiu+hit), u®) =0,
where h(T) = £(7) + y_a(7). Thus
T T -

8
u=] exp(/ a(ulaulh(s)ds = =~ | exp(~ J afu)du)h(s)as
o 8 T T

holas.
Using the lower bound of a(T) we obtain the estimate

o
lutry] € J e n(g)|as < ;"- Int .

L]
1 L (t,»)

T
Lemma A.d.3: Let g € C[0,%); f, h, £(1) | g(s)ds e C[0,#], and f(=) = 0.
0

Then




T

T
(A.d.3) lim £(1) | g(s)h(s)ds = lim h(T)E(T) | g(s)ds

: e 0 T+ 0

. holds.

i Proof: The limit on the right hand side of (A.d.3) exists. It remains to show
N T T

; lytt)] = |n(t)e(v) | gls)ds - £(1) | g(e)h(s)ds] <€ for T 2 T(e) .
. 0 0

= T

- We set Ihi =My, (1) ] g(e)asl = M,. Clearly

. L (0, 0 L (0,%)

:i T

Jytt)| = [£01) [ g(s)(h(T) - h(s))as| <

3 0
L3 ~

- t T

i < JE(1) | g(s)(h(t) - h(s))as| + {£¢1) [ g(s)(h{T) - hia))]
o :
! holds. We choose T = T(€) so that

Jn(t) - n(s)| < -2-,-‘;- for 1.8 > T
2

F
)
'll

Lo
y l,-.l._.]rl'

D

.

holds. Then we choose T = T(€) » T guch that

v

~

T
lteo] < e(an, | lg(s)fas)™! for 1> 7T .
0

. This implies
lytt)| <€ for 1> T.

The following Lemmas are results on the behavior of the layer solutions.

Lemma A.d.4: There are positive constants c¢4 < cj such that

c1/2m’; < p{0) < czhm’i;

holds.
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Proof: The relations (2.11) imply

w0y =/ 2(2 s b - 2D L /z(zn/“- oy,
/b + 1

Y 2 to/d F(/D), with F(E) = 1 - S

(£ + 1)an§

Elementary calculations give
Fec[i,»), F(E) > c >0 for £ e [1,»]

This implies the existence of c4,¢3 > 0 such that

2 2
<y ~ €
-— € € — ,
3 F(/b) 3
Lemma A.d.5: :' : < I,—t—.-l - < ¥(0), 11..._1’_,.. - :':
n-plL [0,%) t+® n - p

Proof: Let H(¥) = (=Y—)?. With (2.11) wve get
n-p

H(-£a/B) = $(0)2

To verify the second assertion of the lemma we use the rule of de 1l'Hopital and the

relations
(A.d.4) -‘-’-‘g-—-}-ﬂ, 9'1‘--bf’1+n, d--b:,-p,
ay av ay
v
which follow from (2.11):
~ Vv 2(n - p) b - 1
AMm H(Y) = lim — =3 = e — T T ]
¥*0 ¥+0 (n ~ p) ¥v+0 2(n - p)(b —ytnt p)

To complete the proof of Lemma A.d.5 we show that H(y) is monotonically decreasing:




-—rlele-.

n 2 - a a ~ a - N
g WM ien M) = (n-p)? - B2l n e p) .
3 b -1
'l qay (n = p) R
. a A - am 2,0 ]
K Since n - p € 0 we have to show that M(¥) » 0. (A.d.4) gives = = -¢"(n - p + 1) < 0,
. . ay _ -
:{ . for ¥ € [-4n'D,0), which implies that M is monotonically decreasing on [~2n/b,0} and,
}t thue, M(V¥) > 0 there, because M(0) = 0 holds.
. Lemma A.d.6: let To = y(0)2&n {-. Then
T < const Aly(0)Z, wyr < adgcoy ,
L (1"0,“') L (it _,®)
. 0
tnl < const Al 5 f 0 W(O)z, ol < const ad s—}—T ;lo)z
. L (110,') L (it ,=)
. 0
D hold for i > 0.

Proof: z = V¥ is the solution of

2 -L;—Ez, z(0) = y(0)
¥

An application of Lemma A.d.l1 with u = ‘0(0)"1 (see Lemma A.d.5) yields

(A.d.5) Y(T) < V(0)exp(-T/¥(0)) .

Taylor's theorem, Lemma A.d.5 and (A.d.4) imply

V)] € p0)vir)

In(t)| < const — YO §(T)
];(r)| < const-g—_’——féw)i(r)
This completes the proof of Lemma A.d.6.
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a0t
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LAY

. ‘
e talta a8,

- + 1 -
Lomma A.d.7: 12TB+ /214 | < conat AY%(0)% nolds for 1 > o.
L (it ,=)
] 0
° ;-;-2 (1-"(;))2 " b ; 1 -; “ b+
Proof: We set H(y) = ( )< = —=x-—, where F(¥) = e’ + e -y - .
=220 ) 2E(¥) b -1 b -1 b-1

An application of Tnylor'a*theorel yields

Vo2 S2b + 132 ‘b -1
(F*(¥)) *(-S-_—T) [!+O(Wb+‘” '

2w = v 221 1w o(v 250
which implies
" b + b~ 1
H(Yy) = b - [1 + 0(* b + 1)] -

Hence

/ 1+o(o )] -/:+:+o(v)

x
v

The assertion follows ftom Lemna A.d.6.
T

Lemma A.d.8: Let Yy = wmj v(s) 'as. Then
0
. -1
a) lim y(1) = 0
T
b) Myl < ¥(0)
L (0,®)

Proof: a) de 1l'Hopital's theorem and Lemma A.d.5 give:

lmoy(r) = Lm (- 22B)7T e e et o /20
T+w® T+ 2 T+® n -
¥ v P
b) y is the solution of
y=2—Ly+1, yooy=o0.

]

Since ; = 0 holds at a relative minimum or maximum of y in (0,”) we obtain

-5Q-
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ly] = (el < W(0)
n-p
{
4
g From y(0) = 0 and a) we conclude b).
5 T,
Lemma A.d.9: Let y = V' (1) | ¥ “(s)ds. Then
0
1 b~ 1
a) lim y(1) = &
13m 2 b 1
b) Iyk < $(0)
L (0,%)
c) My -% /-E—:——:—l . < const Ai/%—}-} v3o) for 1> o. K
L (211’0,"’) g
Proof: a) From de l'Hopital's theorem and Lemma A.d.5 we derive: . ® 4
lim y(1) = lim (-2 2= R)7t 1 1 /b= 1 1
2 ) 2/ b+ .
T T4 W3 wz R
-
2 I
b) ¥ is positive and monotonically decreasing. Thus, Lemma A.d.8 gives ) p

y(1) < y(r) f
0

T i, -
Vv (s)ds < ¥(0) .

c) y 1is the solution of

9=25‘-—:—P-y+1, y(0) = 0.
L] e

An application of Lemma A.d.1 with u = gz (see Lemma A.d.5) ¢ ves

V(o)
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A Ao o fomd .
by =z /o33l < 3 /BT o~ 2 +

y{0)
+ 1 Woexp(- =11 +azp /boty +
¥(0) w0 L 0=

17 n - b -1
+ = yo)ry + 2R 1
2 ; b+ 1 L.(r/z,-)

’

which implies

1 /-1 b-1,4i = 2§ * /m‘z i
Vy-3 /57! )‘constl/b—r,k + v+ o) viiont) .

o b 1
L (2ivy,
1 o
Lemma A.d.10. Let y(t) =T—I ¥(s)ds. Then
T
V(1)
Iyl < const /tn/b

a
L (0,»)

Proof: Obviously y(T) = -y(1)/¥(1) and Yy 1is the solution of

v = - E%E Yy =1 y(0) ~ ~(0)/¥(0)
v

Y assumes its maximum at T = 0 or at a stationary point. Using Lemma A.d.4 we obtain

y(0) = :n/5'< const /4in'b .
v(o)

For stationary points

fy(t)| = |w—!—r| < ¢(0) < conat Yin'b
n-p

holds by Lemma A.d.5.




Lemma A.d.11: let y = « Then

a) lim y(1) = /'l;—':_'-:'

T+

b) iyl < const ¥n'b,

L (0,=)

<=

c) Iy - /%—:—-}I - < const A%y3(0) for 1> 0.
L (it,,%)

Proof: a) We apply de 1l'Hopital's theorem and Lemma A.d.S:

L .
limY(T)'llmi-e--limew.—w—.' :-:
T+ [ ad!] ; o n-p

b) y is the solution of

A -

y-- y-e¥, y@) =

[} b 1
]
As in the proof of Lemma A.d.10 we have to estimate |y(T)| at T = 0 and at stationary

points:

y(0) = (1 - =¥ 100) < const
/b

Vb - 1
T

Similarly to the proof of Lemma A.d.4 we obtain

y(0) € const /in/Db .

For stationary points we have

.
" a .

jy| = ewlx—w—rl < y(0) < const Yin'b .
n-p

~53-




c) We apply Lemma A.d4.2 with b = Vi—1(0) and obtain

-

/b= 1 - /b = 1
ly(ty - b+1|<“°" S drunal

t
- 2R3
< >
-

-« »

which implies

. s

P b+ 1, " I
U TR I I <

=) L (iro,-)

< const $(0)[ /21 a2 (0) + A1 (0]

by the Lemmas A.d.6 and A.d.7.

P

e—v -1
Lemma A.d.12: Let y = Y Then
T
. /_b -1
a) lim y(T1) = —
1o b(b + 1)
k) Myl < const/in'b
L (0,»)
c) My - /-ﬁ%%;_)l " < const Xiva(O) for i > 0.
L (it _,™)
0
e-w 1 - e‘p
Proof: a) y(1) = — ¢ —/——. Lemma A.d.11a) yields the result.
O

a

b) follows from Lemma A.d.11b) and from e~w < /b.




i S

< Ol

o € a TR TEN
AT I D

-

-y v oot
- b-1 e . l-e _ _-¥ b -1
R A I - A vy v *

Lt /B . 1."(110,-)
. v
-y B =1 b -1 1-e b =1
+ le - f e <t - 2 +
bb + 1) bb + 1) LT (41 ,%) ; b+t L (it g,=)

A 2 i3 /b= 32
+ JE e ", < conse A (¥7(0) + [eprae vi0)) .

LT (it )
- Tyt ®
Lemma A.d.13: Let y(T) = y(t) [ ~————ds. Then
0 2
Vv(s)
b -1
a) lim y(T1) =
- b ¥
b My -R2rh < const AYy%(0) for 1> 0.
L (21r°,-)

Proof: The lLemmas A.d.3, A.d.8 and A.d.11 imply a). y is the solution of

. n
y =

Ey+';°. y(0) = 0
v

< |

An application of Lemma A.d.1 with u = W-1(0) (see Lemma A.d.5) yields

-

2 - - vy - _
b- 1 b -1 -1 -1 T),1 - e n~pb-1
- € — - - -1 Il
lyeo) b+1l bt oY (0)1) + ¥(0)exp(~y~ (0) 2) 2 Mra e
L (0,»)
¥ 1/
- 1~e ;-;ab-1
VO I+ b et .
v v L (1/2,®)
Thus,
=55~




Y :—-.—11 ‘kzib-1+#(0)kiconat¢1n/;+
s b+ 1
x.(zuo,-)
- 1- o' b = 1 < b -1 TR
+ vt A MU e e LI <
; L(itg,®) ¢ LU

iib=~-1_ * ~q b-1 :3
< const AM[A b7t V(0 Ya/D + vi(0) teTT Vo] .
M T -;(s) -
Lemma A.d.14: Let y(T) = y(T) f ds. Then
° /5 vie
a) lmy(r) =—2=1_
e vbB(b + 1)
b -1 134
b) ly - —1 < conat AM¢"(0) for i > O.

/b(b + 1) x.'(zuo,-)

The proof of this Lemma proceeds analogously to that of Lesma A.d.13 and is therefore

omitted.

a - - T o
Lemma A.d.15: Let y(T) = ¥(1)(n(1) - p(1)) | ¥ .s)ds. 7Then

1 0
a) lim y(1) = - 3
T
b) Uy + -;-l - < const 1193(0) for 1 > 0.
L (2110,-)

- - . .

S T .
Proof: a) y = —x'E '2 f [ J z(l)dl- We combine the Lemmas A.d.5 and A.d.9a) to
0
v

obtain a).




-~ ~

1 _n-p) /B
b) |y+2| < Uy 2 .b—'f—T. +

L7 (21T, ) 2 L (211, ,%)
0o’ v 0’

L
W2 | v isres - 5
0

- -
L (2110,.) L (2110,‘)

p + 1
AV A e LN

L (21101')

ir/p+ v, /b -12:3 i /b= 132
< const AM(/REL . SR Vo) +2 7 Vo)

T, e;(s)

Levma A.d.16; Let y(T) = (n(T) = plT)) J - ds. Then

Vs

a) lim y(1) = - =
T

b
b

m e+ /2R ¢ const A} /221 %0y for 1> 0.
L (2181,

T .—w(s) -1

Lemma A.d.17: Let y(T) = (n(T) = p(T)) J ds. Then

--f b=l
a) lim y(T) 5+ '

e
ib) Yy + /_._b_:—-!—l
bb + 1)

The proofs of the Lemmas A.d.16, A.d.17 are gimilar to that of Lemma A.d.15.

2
/bevis)

< const Ai/ : : : w‘(ot for i1 > 0.

»
L (21T0,.)




Lexma A.d.18:

L (0,)

c) ln,l -

L (0,»)

a e,
L (0,%)

Proof: The estimates

(A.d.6)
{(A.d.7)

hold. since

holds, (A.d.6) follows.

IT;I

which implies (A.d.7).

- < const (—h;h-—‘- + 6‘/3(!.n/3)5/2)
L (0,»)

< const(d + 645(lm’b_)5/2).
b

1
b ~

< const(

+ 8%/50anv5)%/2),
1

< const(—L— + §4/5(1nvE)¥/2).
5=

Inl 1 , Ipl < const/in/'b

L'(0,=) !

L (0,»)

Tyl < conat (2n/D)
L0,

3/2

Int ., 1pl <in-pi = $(0)
L0,

! L' (0,e)

L (0,%)

Using (A.d.5) in the proof of Lemma A.d.6 we get

< $(0)IT exp(-T/$(0))1
L'(0,=)

, = ¥3(0)

L (0,=)

Now we are able to find estimates on the functions in (2.16).

Using p'(0) = -(‘—-t-’————- - 54) b-1 and the monotonicity and 8ign of ¥ we get
(b - 1)2 b+ 1
In1 < const (—2 = + 6%) P (/an/ + ) ¥2) <
P L0, (b~ 1)
< const | L 54(111";)3/2) .

/b - 1




LW N
LS

. 45

b -1 3/2
b+1fl;(/lnf5*(lr/3) } <

1.0 < const (—2 3

P
P 17 (0,*) (-1

+ 8% (a®)¥?) .

< const
Vb - 1

;'(T)

we set (1) = p (0)(e¥' ") - VT A (1) = B (1), use

(0) - _(_________ 64](b - 1 2*(0,
® - 1)° B+

and obtain
L] { I, < const|/® ( b rr’T)z‘”'""; + 1. 545“'",-5)3/21 <
L (0, (b~ 1) ey

+ 6% (B)?) .

< const (

/b -1
This estimate and the Lemmas A.d.8 and A.d.10 imply

+ 845 a3 <

"W, < const /b (——
P o, b

< const

(B 645 anm™?)

Obviously

.
o
-

v -—;—20 v [ wemsras ,
T
¥
which implies

l; ', < const| /-E—-;——;—'— (l%—’- + %% (lnfs)s/zl +
P L0,

+ /2nvs | !

/b - 1

+ 848 (Env’g)a/z)] <

< conat[% + 8% (an/®)%?)




»
-

1

”
e

The constant ¢ in (2.15) satisfies (see Lemma 2.1)

lel = J2(—=2 )220 < comae(BT 4 642mD)
(b ~ 1)
Thus, we have
1, < const(22= 1 4 g4/ pn/p « B 1 e ] (zn/’)s”) <

lt, = lc —P- + Vp' < const((——— b = Jlm’;) LI
L(0,%) W(O) L (0,=) /’.m’;
+ T} + 64ﬁ(lm/b-)5/2) < connt(—; + %% (!.nv’F)S/z) p
I;1I - < const[b _": 3 ( b ; LI 64/3(lnf5)5/2]
L (0,=)
e e [ 13/ a0/ + + 84w®)3/2) <
(b - 1) b -1
< const + 848 (n')%/2) ,
b - 1
Ip1 < con-t[b'lg 7 (-———'b;" + 8%% (,.m,;)svz)
L (0,%)

/b

L"(0,®)

< const(2 =14 §45 (an'B)5/2)

- .

+ /5 ((b b =+ 8) (B 4B +

+ 845 (uw$)¥2) <

/b-‘l

< const.(——- + 8%% (lm'_)s/z)
b -1

-60~




& e
’5 AT |
N Lewma 2.4.19: &) 190 < const A*(1n ¢ 2L+ 645 (1B ®/?)
R L (211‘0,-)
R b) l;1l - < const )."(% tn % + 6‘/5(!:\/'5)5/2) '
" L7 (27,
b
:.:-' c) In‘l - < const Ai( 1 _n % + G‘E(lnfs)s/z) '
." L (2i7y,%) ]
- i 1
v 4) ip < const A in =~ .
- Vi 2ty AT Y
ﬁ hold for 1 > 0.
- Proof: The estimates
: (A.d.8) i . Pl < const A/en/B
L't ) Ll (st =)

(A.4.9) lr;l 1 < conat Ailn{- (tnfﬁ):’/z
L (110,-)

hold. The proofs of (A.d.8) and (A.d.9) are similar to those of (A.d.6) and (A.d.7) and

therefore omitted. Proceeding along the lines of the proof of Lemma A.d.18 gives

I; 1, < const Atn -;- [—l— + 64(!nf§)3/2) ’

L (i7y,) /b~ 1

- i, 1 1 4 3/2
ip § < const Atn x ( + &%)’ %) ,
P L.(ito,“) A

1 3/2]

+ 64(lnft_>)

) < const Atn 3 (
L (175, B

Now we apply Lemma A.d.70 and obtain

(A.d.10) R < const Y2n/B 1yl .

P21t =) L (211, =)
o’ o’




»
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b
- T,
where y(T) = ¥(1) f v (a)lHl ds. y is the solution of
) 0 L (8,%)
.. §=22 By eum , y(0) =90 .
* ; L (30.)

An application of Lemma A.d.1 with 4 = ¥~ '(0) gives

NFLELN A

. "y e .
ly(n)] € v(0) exp(-¥"'(0) F)1ur + w0y
L (0,%) L (1/2,%)

Using this estimate in (R.d.10) implies

W < const Aan/B [—— + 6%/BUE12 + 10 § (= + s/ B)?)]

p 1.'(2110,-) /b -1 /b -1

/b -~ 1

< const Xi[zn% 5

+ §%5 ()32

W < const A'[ /221 (2n %Q—;—‘ + 8% (a/3)%2) +
Py (2110,-)
+ YanfB atn § (—= + s*awBr¥2)] <
/b - 1

AR

Y
PR A ]

< const Xi(% in -} + 8% (lnv’g)s/z)

A
»

’
A

N _ &

e %0 Tt

These estimates enable us to show the assertions of Lemma A.d.19:

—
a4

s

A
PR M

la1l - < const[(% + 64¢Em’§] ! Az";’(O) +

L (2470, J1afb

1/b -1

+ AHn 3 22

+ 6% ad)¥?)] ,

l‘;‘l - < const[(-:; + 64)A21 b—g—{ ;02(0) + Ai(% &n —; + 8% (!lm’l?)s/z)l
L (211'0;"')

-62=~
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R w— B AR Gl e e e ol - T —————

g . in.t < const ——— xi[],n ll.-_._. %% (enw'b )5/2] ce]
1 = b-1 A .
L (211’0,')

-:'._ . /-—.——'

= lp’ < const ¢ : 0 X"(!n % —b—-i—l + 8% (ln/l_a)s/z)

A L (211’ »)

\"\‘

-. The last Lemma of this paragraph gives estimates on the smooth terms in the asymptotic
expansion.

Lemma A.d.20: Let 0 < X < 1. Then

a 131, _ < const(p—T + &%), b) 1p'f < const(—E—s + 8%),
L (0,x) L (0,1) (b - 1)

c) My, _ ¢ <:onst(b Tt 58), ay 1p”t - < const( i 68),
L (0,1) (b - 1)

L (0,x)

+ 6%1n'D)

< const(*21 + §%a/B), £ Wy, < const(——

a) lpl
EENCES b 0,1 /b= 1
g) 1B, o ¢ const (2 = '+ 6%/d), n) Y, < const(-——l-—sT.z + 6%n/d) .
L (0,1) L (0,1) (b - 1)

oof: We will use the estimates

1 | b -1

(Aa.d4.11) p i € P
2p(x) + 1 (b + 1)W1 -x
{A.d.12) — L ® - < const %—i—%, - 1 - < const ,
2p + 1 L (0,x) 2p + 1L (0,1)

which we obtain from (2.8) by elementary calculations. From (2.3) and (2.8) we obtain

|B'| - - l___-—-—-J " < const[ b 3
L (0,x) 2(29 + 1) L (0,%) (b ~ 1)

+ 64) %—-}—% < const(s—:——f + 54) .

o
0 - ®, -
SN LI ]
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|p"| -I——jj—’—.-——l _ € const (—‘_—"GJ(b-'J (b-1+ )<

L 28+ 0 b - 1n? b+
1 8
< const(b 7t 8 ).
- b 4 b 4 b2 8
ip"t < const( 3+ §%)( 7+ §%) < const|( el 6°) .
L (0,1) (b - 1) (b - 1) (b - 1)
The assertions on 51(x) = ~Jy(0) b - D= x) remain to be shown:

(b + 1)2(2p(x) + 1)

15,0, < constli[@(m i ﬁl - <
L (0,1) L (0, 1)

< conat| > 5+ 64)/2n/3 (b

3 : :)2 < const('lb—;‘- + 64/111/5) R

(b - 1)
35| = {39c0) LI (1-42xdy)
2(b + 1)(2p(x) + 1) (2p + 1)
< const|J|y(0) g: : |— ! |

2p(x) + 1

by (A.d.11). Thus,

IpM . _ < const{—2 + 64)/£n/3 (=12 < const (= b + 6‘/21"_)

£°(0,%) ® - 1) b+

|§;| - < const| + §%/3)
L"(0,1) /5 -1

T = 13%(0) b-o? s (-3 ”’Jz)l . <
L70,1) (b + 1)(2p + 1) 220 + 1% %0, 1)

2
< const| b + 68).‘2“/3 b-1¢ const(————L— + Gaﬂ.n/g]
(b - 1)4 b+ 1 (b - 1)5/2

-64-




APPENDIX B: ESTIMATES OF THE RESIDUAL

Substitution of the formal asymptotic approximation
;-($+w+x$1 + Ay, E+n+k;1+Xn’,s+p+ks1+kp1,3+A31)
into problem (3.1a) gives the residual

. .

£y L5p ) " (A% + x%;, - X" (R~ R(0) = xB'(0)3¥ + (A(O) =~ R)p, +

. .

+ (R (0) =RV + ($'(0) = ¥")n = A('n, + %;; v (¢ R,)-I»,! -

A3E, + 0, 1 (B = BO) = xB OV + (B - BO) )Y, +

. .

(Py ~ By (0D)V + (¥' = $'(0))p + A{¥'py + ¥ip + (B, + p V] +

+

+

We apply Lemma A.d.20 and obtain

2
4+68],

Ikzi"l I < const Xz( b
L (0,1) (b - 1)

¢ const A2 (—te + 68/2nvE) .

I)«ziv"l 5/2

1

L (0,1) (b -1)

We now apply Taylor's theorem and the lLemmas A.d.6 and A.d.20.

<HaB - By - rcont AL

|}‘- (7 - R(0) = xn'(0))¥)

+ 1B = BLO) = xpr (0NN L LTI <
L (0,1) L (410,‘”)

16, + 2,0,0,807 ") + 26,071,000 ") + an 7, p™h 4,07

Lo, L0, aA1) L' (0®)




W T

- v + 151 a3yp0) <
L7(0,4A7 ) L (o

< const(a\zrgli"l

’

1

< const A%(tn 4)2( = + $%awB)?) .
b

Similarly we obtain

: HR©)- Ry, 0 <13(0) - pb A1 +
: L 0,1 Lo,6ar) ' ' 0.m)

IO =B < exZt 1pen [v,00)] +
L (0,1) L (51’0,”) L (O,GXTO)

X + 1p"1 I const Xs(% £n % + %5 (ln/S)S/z)
L (0,1)

< const len%fﬁ.m’s (b : T+ 64)[ b; !+ 6%nB) <

< const Azln-} (%- + 68211";) .

K (0) - A vl < AT Ipl Aty L 1 I
L'(0,1) L (0,3A1) L (0,®) L0, 1) L 3ty =)
: < const|A%gn % Yin/b | L ; LI 64v‘lnf5]£m’§ + ( ., 6‘¢zn/§)x3/:.nlij
/b - 1

< const A%tn % §%(anrB)?

1§ (0) - §*)nt 1 < 3T g At + 1 Int -
L (o, L (O,JMO) L (0,») L(0,1) L (31,)

< const[xztn % 7in/d (

2
+ 68)/an/B + (—2__, §8)3 7 /b

1
b -1

< const Azl.n-;- (% + 68£n/5)
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- lw'n1l 1 < AP artgingd + Myt gt < .
‘ L (0,1) L (o, 42\1 ) L (0,®) L (0,1) L (410,-) .
N < constlkz[b 1 Tt 64)211% in'® ( + 8% (gn,ls)f’/z) + .
b-1 S
o 23—+ &%) 1 gn 4+ 6B (an/5)%/2)] < o
(b = 1) /=1
®
< const Atn } (2 + §8/5 (an'®)3) .
nan <@, I, < const A3( + §%/3n/%) Jan/ g
. L (0,1) L (0,1) L (0,®) Yb = -
S .
~ < const Az(-:; + 542!\/;) ' ",
- - ~ -~ 2 - -~ ..l‘ "
I(n, + n )V 0 < A°lp + n,l 4‘1’”& +
LA UM T E RN NS >
+ AMn, + ; ] I; 1 < const[l ( + 4
T L PYC IR b Vit Ee
(’

+ 6%5 (n/5)>/?)tn 5 J1n/B (e §4% (and>?)

o L3t §%/4n/B

. ni+slE (an'5)¥2))(3 o0 3 + s45 an'®)?))
- /b ~ 1

< const Azln-;‘- (%— + 68b(!.m’5)“/2) ’

o 20 = - 2 - - -
T DN EME S WL <Ay, (vpy! o + b, ) <
L'(0,1) L (0,1) L (0, 1) L (0,®)

< const A2(—— + 6% ') (—5— b =3, 44D + —— + 64 B> <
/b - 1 /b= 1

< const Xz(b: T s3/5 (!-nv’S)s) .




' PR

e

- a i

. |

R

TN

o

L]

The remaining terms are treated analogously, and ey

(8.1) IF, (P, , < const A [—T—0 + tn 1 6%0anB)'"/?]
Ve . 4 A
(b - 1)
follows.
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ABSTRACT (cont.)

paper is that, if the perturbation parameter is sufficiently small then there
exists a solution of the semiconductor device problem which is approximated
uniformly by the zeroth order term of the expansion, even for large applied
voltages. This result shows the validity of the asymptotic expansions of the
solutions of the semiconductor device problem in physically relevant high-
injection conditions.
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